Databricks AIセキュリティフレームワーク(DASF)の紹介
Databricks AI Security Framework(DASF)バージョン1.0 のホワイトペーパーを発表できることを嬉しく思います! このフレームワークは、ビジネス、IT、データ、AI、セキュリティの各グループのチームワークを向上させるように設計されています。 本書は、実際の攻撃観察に基づくAIセキュリティリスクの知識ベースをカタログ化することで、AIとMLの概念を簡素化し、AIセキュリティに対する徹底的な防御アプローチを提供するとともに、すぐに適用できる実践的なアドバイスを提供します。 機械学習(ML)と生成AI(GenAI)は、イノベーション、競争力、従業員の生産性を高めることで、仕事の未来を変革します。 しかし、企業は人工知能(AI)技術を活用してビジネスチャンスを得ると同時に、データ漏洩や法規制の不遵守など、潜在的なセキュリティおよびプライバシーリスクを管理するという二重の課題に取り組んでいます。 このブログでは、DASFの概要、組織のAIイニシアチブを保護するためにDASFを活用する方法、
トレーニングの高速化:FP8によるDatabricks Mosaic AIスタックの最適化
Databricksでは、あらゆる分野の世界最高の企業が、自社独自のデータに基づいてトレーニングされカスタマイズされたAI搭載システムを持つようになると考えています。 今日の企業は、独自のAIモデルをトレーニングすることで、競争上の優位性を最大限に高めることができます。 私たちは、企業が可能な限り迅速かつコスト効率よくAIを育成するための最良のプラットフォームを提供することをお約束します。 本日は、LLMスタックに施されたいくつかの大きな改良をご紹介します。これにより、お客様の事前トレーニングと微調整の効率が大幅に改善されました。 この投稿では、最新のスループット数値を紹介し、これらの結果を達成し、何千ものGPUに拡張するのに役立ったいくつかのテクニックについて説明します。 最新のベンチマーク結果 さっそく結果を見てみましょう。 図1は、BFloat16(BF16)とFP8(Float8)のデータ型を使用し、異なるモデルサイズでトレーニングを実行した場合に達成された1秒あたりの浮動小数点演算(FLOPS)を示して
Azure Databricksによるデータ漏洩対策
前回のブログ では、 仮想ネットワークサービスエンドポイント または Private Link を使用して、Azure DatabricksからAzureデータサービスに安全にアクセスする方法について説明しました。 この記事では、これらのベストプラクティスのベースラインを前提として、データの流出を防止するために、ネットワークセキュリティの観点からAzure Databricksのデプロイを強化する方法について、詳細な手順をウォークスルーします。 Wikipedia によると データ漏洩は、マルウェアや悪意のある行為者がコンピュータから不正なデータ転送を行うことで発生します。一般に、データ漏洩またはデータエクスポートとも呼ばれます。データ漏洩は、データ窃盗の一形態とも考えられています。2000年以降、多くのデータ漏洩が発生し、世界中の企業の消費者信頼、企業評価、知的財産、政府の国家安全保障に深刻な損害を 与えました。 この問題は、企業が機密データ(PII、PHI、戦略的機密情報)をパブリッククラウドサービスで保管・
Hightouch Campaign IntelligenceとDatabricksでより深いマーケティングの洞察を引き出す
次世代の顧客体験は、さまざまなタッチポイントから得られるデータと洞察に基づいて構築されます。 マーケティング担当者はこれらを通じて、顧客のニーズや嗜好の微妙な違いを察知し、顧客とビジネスの双方に付加価値をもたらすパーソナライズされたエンゲージメントを構築することができます。 しかし、そのためには慎重な思考、計画、実行が必要であり、どんなに綿密な計画を立てても成功が保証されるわけではありません。 このため、マーケティング担当者は、特定のオファーやコンテンツ単位に対する直接的な顧客の反応と、これらの取り組みがサポートすることを意図した包括的な組織目標の両方の観点から、取り組みの影響を慎重に検討することが不可欠です。 この分析により、マーケティングチームは時間と費用をどこに費やすべきかをより的確に判断できるようになります。 キャンペーンインテリジェンス:顧客データとマーケティングデータの統合 このような分析と洞察のニーズに対応するため、Hightouchは キャンペーンインテリジェンス を導入しました。 このソリューシ